Specification of Thermoelectric Module TEC1-24108P

Description

The 241 couples, 54.4 mm × 54.4/57.0 mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C /200°C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	30.0	32.4	Voltage applied to the module at DT _{max}	
I _{max(} amps)	8.3	8.3	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	159.7	172.0	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	2.75	2.95	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 18 AWG leads, PVC insulated Negative lead wire (Black) Negative lead wire (Black) See ordering option See ordering option See ordering option

Manufacturing Options C. Ceramics:

A. Solder:

- 1. T100: BiSn (Tmelt=138°C)
- 2. T200: CuSn (Tmelt = 227 °C)

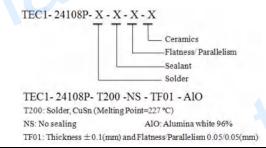
B. Sealant:

1. NS: No sealing (Standard)

4. Customer specify sealing

- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- S. El S. Epony soman.

- 2. Aluminum Nitride (AlN)
- **D.** Ceramics Surface Options:

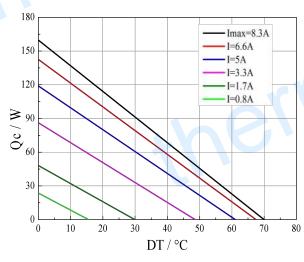

1. Alumina (Al₂O₃, white 96%)

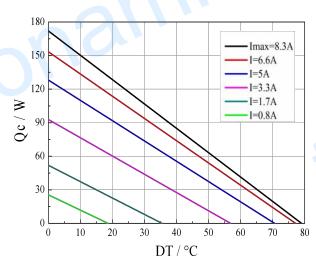
- 1. Blank ceramics (not metallized)
- 2. Metallized (Au plating)

Ordering Option

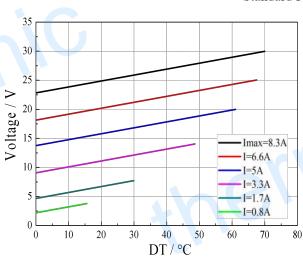
CCC	Thickness	Flatness/	Lead wire length(mm)		
Suffix	(mm)	Parallelism (mm)	Standard/Optional length		
TF	0:3.4±0.1	0:0.08/0.08	125±3/Specify		
TF	1:3.4±0.08	1:0.05/0.05	125±3/Specify		
TF	2:3.4±0.05	2:0.03/0.03	125±3/Specify		
Eg. TF01: Thickness 3.4 ± 0.1 (mm) and Flatness $0.05 / 0.05$ (mm)					

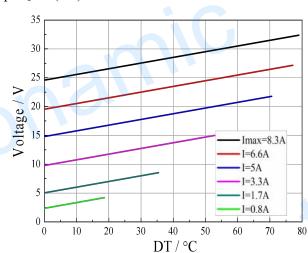
Naming for the Module

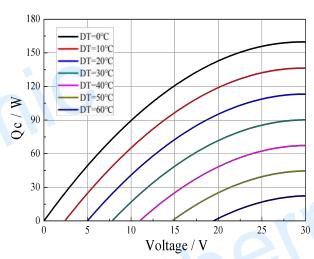


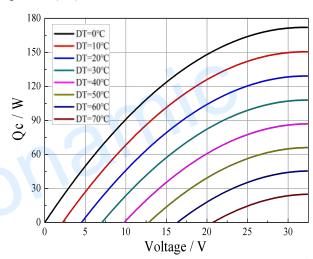

Specification of Thermoelectric Module

TEC1-24108P


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

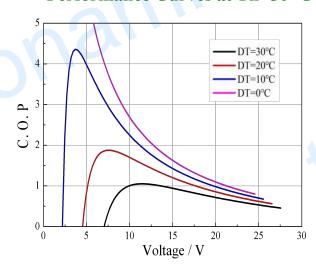



Standard Performance Graph Qc= f(DT)

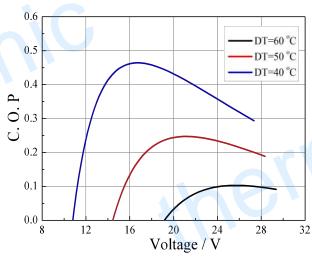
Standard Performance Graph $V = f(\Delta T)$

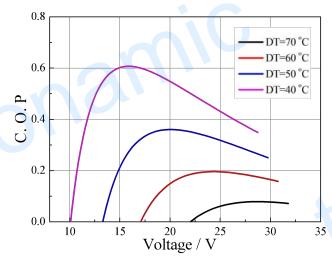
Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module


TEC1-24108P

Performance Curves at Th=27 °C


5 DT=30°C DT=20°C DT=10°C DT=0°C


Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating.
- Operation or storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC