Specification of Thermoelectric Module TEC2-127-127-04

Description

The TEC2-127-127-04 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to 100 °C/ 200 °C applications. It is a 127-127 couples module in size of 40 mm × 40 mm (top) / 40 mm × 40 mm (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	90	101	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	15.4	16.8	Voltage applied to the module at DT _{max}
I _{max} (amps)	4.0	4.0	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	24.5	26.3	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (ohms)	3.65	3.90	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Positive lead wire(Red) Negative lead wire(Black) Negative lead wire(Black) 150±5 Cold side:Tc See ordering option M See ordering option M See ordering option M See ordering option M See ordering option

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

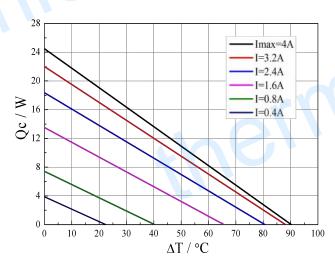
1. Alumina (Al₂O₃, white 96%)

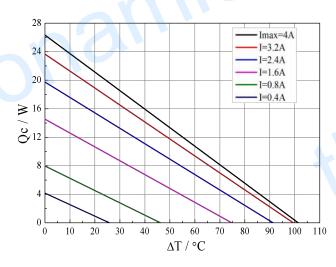
1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

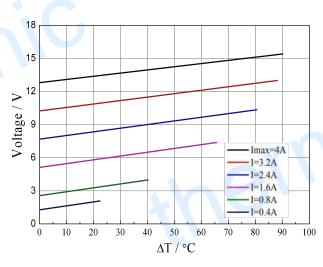
2. Metalized

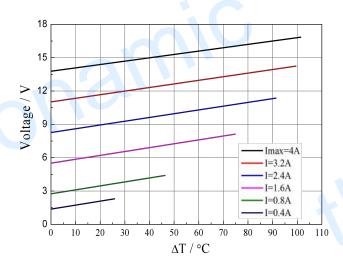
Ordering Option

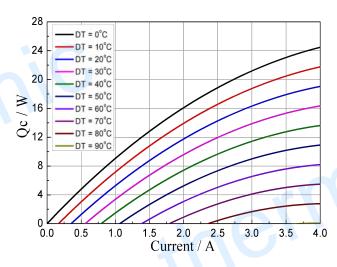

Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length		
TF	0:9.3±0.2	0: Face II 0.08/0.08, Face III 0.08/0.08	150±5/Specify		
TF	1: 9.3±0.1	1: Face II 0.03/0.03, Face III0.03/0.03	150±5/Specify		
Eg. TF01: Thickness 9.3±0.2(mm) and Flatness Face II 0.03/0.03, Face III0.03/0.03(mm)					

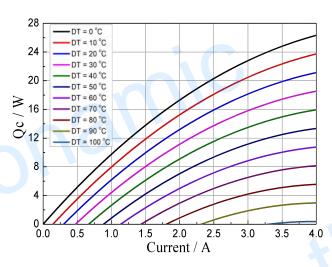

Specification of Thermoelectric Module

TEC2-127-127-04


Performance Curves at Th=27 °C

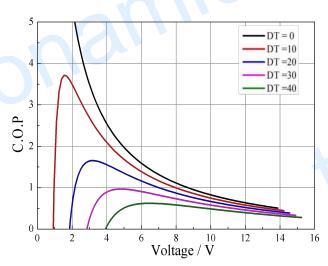

Performance Curves at Th=50 °C



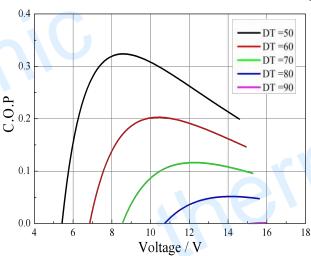

Standard Performance Graph Qc= f(DT)

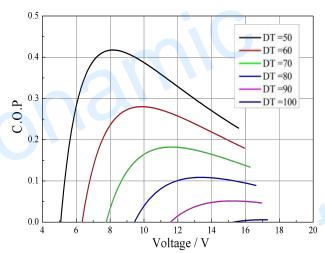
Standard Performance Graph V = f(DT)

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC2-127-127-04


Performance Curves at Th=27 °C


DT = 0 DT = 10 DT = 30 DT = 30 DT = 40 DT = 40

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 40 °C

Standard Performance Graph COP = f(V) of DT ranged from 50 to 90/100 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC