Specification of Thermoelectric Module TEC5-127-71-31-17-8-03

Description

The TEC5-127-71-31-17-8-03 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to 100 °C applications. It 127-71-31-17-8 couples module in size of 10mm×10mm (top)/40mm ×40mm (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	128	143	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	14.4	15.6	Voltage applied to the module at DT _{max}
I _{max} (Amps)	3.6	3.6	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	5.22	5.56	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	3.90	4.20	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

2. Metalized

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)		
Sullix	(mm)	Parallelism (mm)	Standard/Optional length		
TF	0:13.9±0.5	0:0.08/0.08	125±3/Specify		
TF	1:13.9±0.25	1:0.03/0.03	125±3/Specify		
Eg. TF00: Thickness 13.9± 0.5 (mm) and Flatness: 0.08/0.08(mm)					

Naming for the Module

Specification of Thermoelectric Module

TEC5-127-71-31-17-8-03

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph Qc= f(DT)

Standard Performance Graph $V = f(\Delta T)$

Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module

TEC5-127-71-31-17-8-03

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 60 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 70 to 120/140 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation or storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC