Specification of Thermoelectric Module

TEFC1-00515

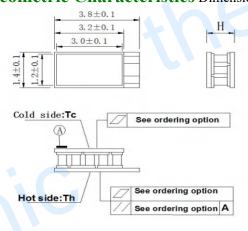
Description

The 5 couples, 1.4 mm × 3.2/ 3.8mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application


- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	0.60	0.64	Voltage applied to the module at DT _{max}
I _{max} (amps)	1.5	1.5	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	0.46	0.5	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (ohms)	0.32	0.34	The module resistance is tested under AC
Tolerance (%)	10%		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

B. Sealant:

A. Solder:

1. NS: No sealing (Standard)

1. T100: BiSn (Tmelt=138°C)

2. T200: CuSn (Tmelt = 227 °C)

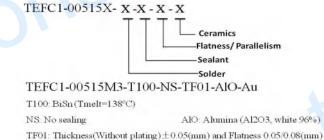
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing

C. Ceramics:

- 1. Alumina (Al₂O₃, white 96%)
- 2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

- 1. Blank ceramics (not metallized)
- 2. Metallized (Au/Ni plating)

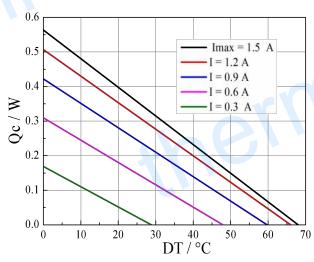

Ordering Option

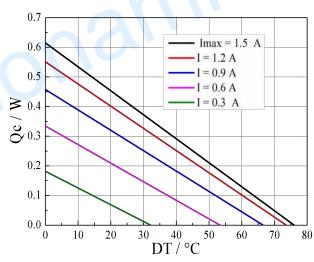
Suffix	Thickness (mm)	Flatness/ Parallelism (mm)
TF	$0:1.1\pm0.05$	0:0.08/0.1
TF	1:1.1 ±0.025	1:0.05/0.08

Eg. TF01: Thickness (Without plating)1.1 \pm 0.05(mm) and Flatness 0.05/0.08(mm)

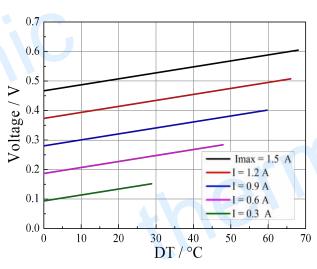
: Standard ceramic surface without metallizing M1: Cold Side metallizing M2: Hot Side metallizing M3: Both Sides metallizing

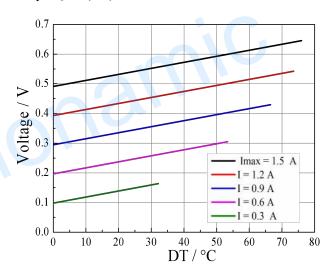
Naming for the Module

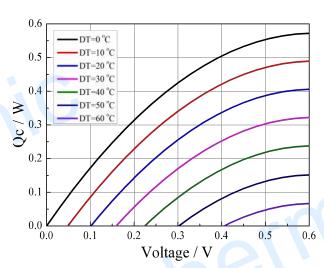


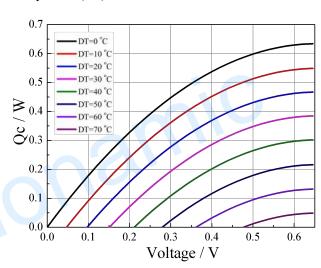

Specification of Thermoelectric Module

TEFC1-00515

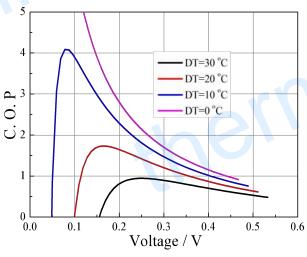


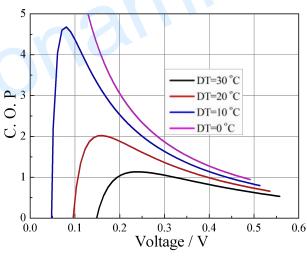

Performance Curves at Th=50 °C



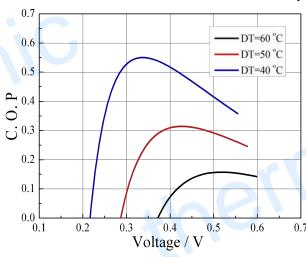

Standard Performance Graph Qc= f(DT)

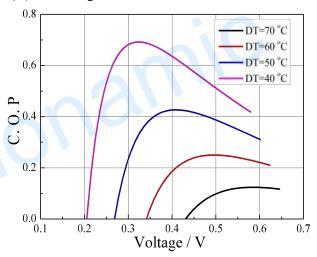
Standard Performance Graph $V = f(\Delta T)$


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEFC1-00515


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC