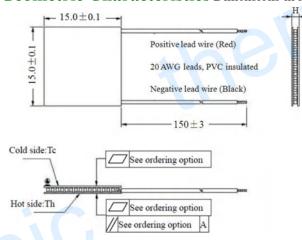
Specification of Thermoelectric Module TEHC1-01703

Description

The 17 couples, 15 mm × 15 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N2	
DTmax (°C)	70	79	Temperature Difference between cold and hot side of the	
			module when cooling capacity is zero at cold side	
Umax (Voltage)	2.2	2.4	Voltage applied to the module at DTmax	
Imax (Amps)	4.3	4.3	DC current through the modules at DTmax	
QCmax (Watts)	6.04	6.60	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	0.40	0.0.43	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

B. Sealant:

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

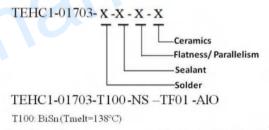
C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

D. Ceramics Surface Options:

2. Aluminum Nitride (AlN)


2. Metalized

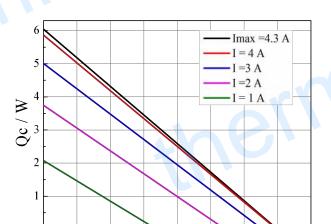
Ordering Option

Suffix	Thickness	Flatness/	Lead wire length (mm)
	H / (mm)	Parallelism (mm)	Standard/Optional length
TF	0:4.2±0.10	0:0.05/0.05	150±3/Specify
TF	1:4.2±0.03	1:0.02/0.02	150±3/Specify

Eg. TF01: Thickness 4.7±0.10(mm) and Flatness 0.02/0.02(mm)

Naming for the Module

NS: No sealing AlO: Alumina (Al2O3, white 96%)

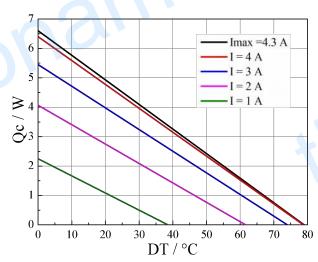

10

20

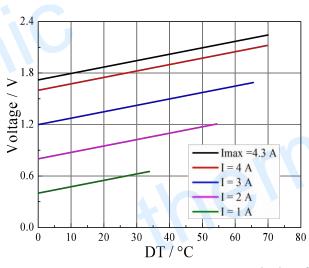
Specification of Thermoelectric Module

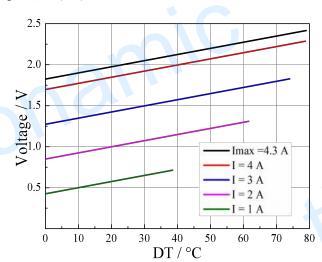
TEHC1-01703

40

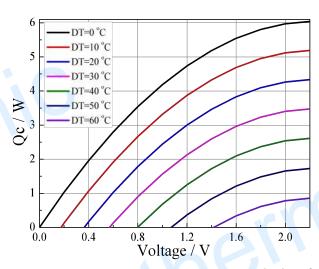

DT / °C

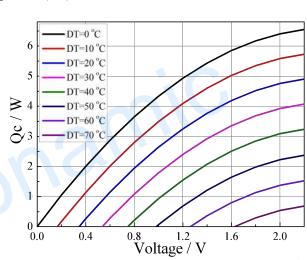
60


70


80

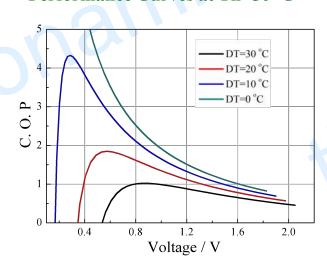
Performance Curves at Th=50 °C



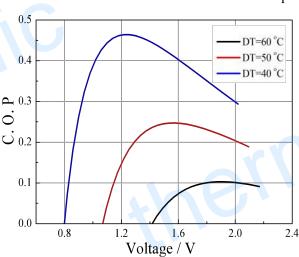

Standard Performance Graph Qc = f(DT)

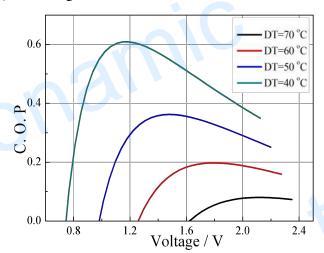
Standard Performance Graph V= f(DT)

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEHC1-01703


Performance Curves at Th=27 °C


5 4 DT=30 °C DT=20 °C DT=10 °C DT=0 °C Voltage / V 1.6 2.0

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC