Specification of Thermoelectric Module

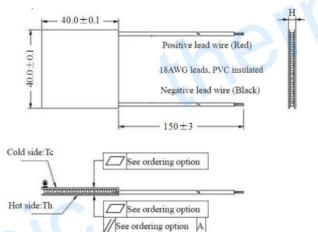
TEHC1-07115

Description

The 71 couples, 40 mm × 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 74°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N2	
DT(9C)	74	83	Temperature Difference between cold and hot side of the	
DTmax (°C)			module when cooling capacity is zero at cold side	
Umax (Voltage)	9.3	10.1	Voltage applied to the module at DTmax	
Imax (Amps)	15.3	15.3	DC current through the modules at DTmax	
QCmax (Watts)	95.1	99.7	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	0.46	0.49	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Manufacturing Options

A. Solder:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

B. Sealant:

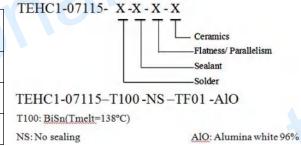
3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

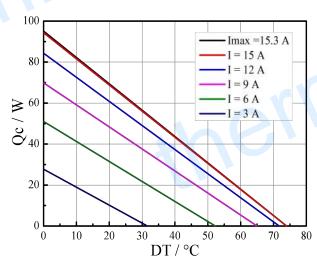

D. Ceramics Surface Options:

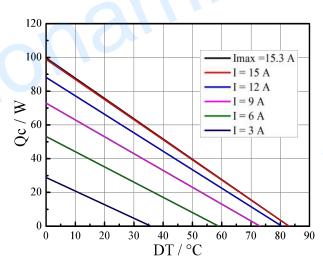
2. Aluminum Nitride (AlN)

2. Metalized

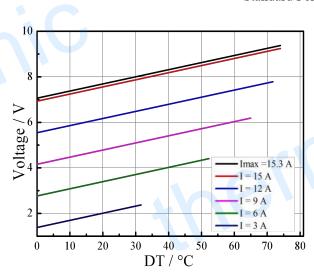
Naming for the Module

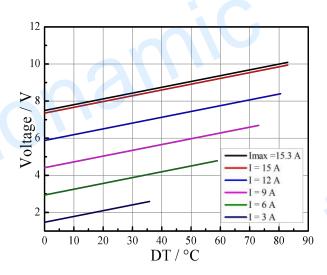
Suffix	Thickness	Flatness/	Lead wire length (mm)		
	H / (mm)	Parallelism (mm)	Standard/Optional length		
TF	0:3.6±0.1 0:0.08/0.08		150±3/Specify		
TF	1:3.6±0.03	1:0.03/0.03	150±3/Specify		
Eg. TF01: Thickness 3.6±0.1(mm) and Flatness 0.03/0.03(mm)					

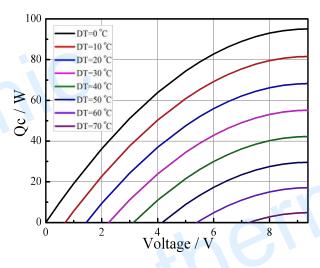


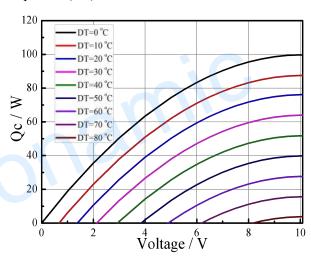

Specification of Thermoelectric Module

TEHC1-07115

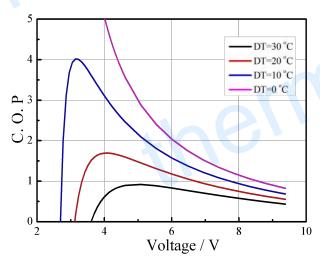

Performance Curves at Th=27 °C

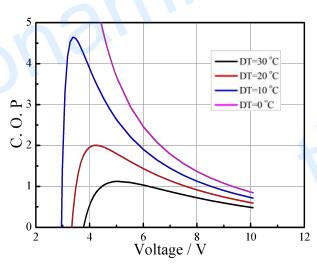

Performance Curves at Th=50 °C



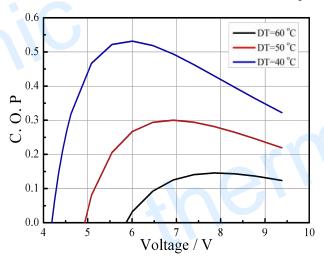

Standard Performance Graph Qc= f(DT)

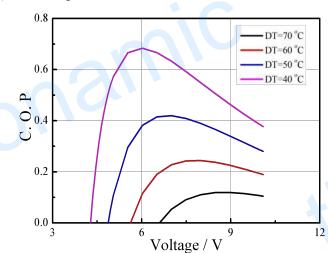
Standard Performance Graph V= f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEHC1-07115


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC