Specification of Thermoelectric Module

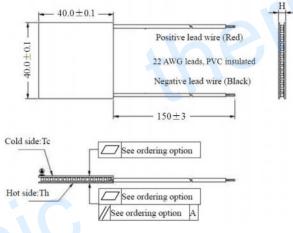
TEHC1-07125

Description

The 71 couples, 40 mm \times 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 74°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Performance Specification Sheet

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Th (°C)	27	50	Hot side temperature at environment: dry air, N2	
DTmax (°C)	74	83	Temperature Difference between cold and hot side of the	
			module when cooling capacity is zero at cold side	
Umax (Voltage)	9.4	10.1	Voltage applied to the module at DTmax	
Imax (Amps)	25.2	25.2	DC current through the modules at DTmax	
QCmax (Watts)	156.8	171.1	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	0.29	0.31	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

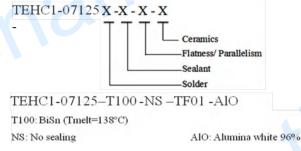
Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

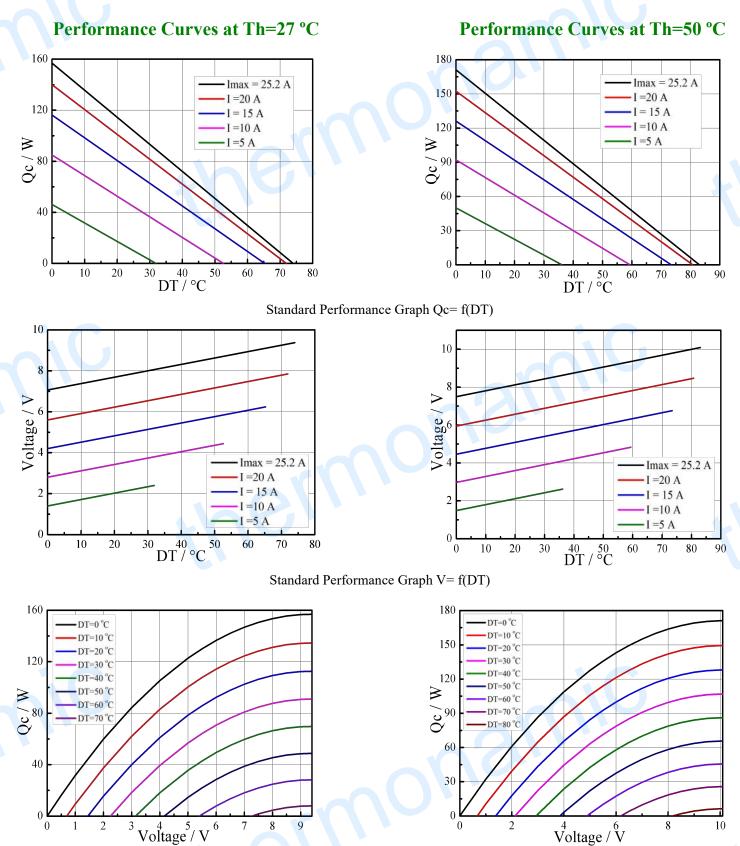
- 1. T100: BiSn (Tmelt=138°C)
- 2. T200: CuAgSn (Tmelt = 217°C)
- 3. T240: SbSn (Tmelt = 240°C)

C. Ceramics:


- 1. Alumina (Al₂O₃, white 96%)
- 2. Aluminum Nitride (AlN)

- B. Sealant:
- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- **D.** Ceramics Surface Options:
- 1. Blank ceramics (not metalized)
- 2. Metalized

Flatness/ Parallelism Option


Suffix	Thickness	Flatness/	Lead wire length (mm)			
Sumx	H / (mm)	Parallelism (mm)	Standard/Optional length			
TF	0:3.4±0.1	0:0.08/0.08	150±3/Specify			
TF	1:3.4±0.03	1:0.03/0.03	150±3/Specify			
Eg. TF01: Thickness 3.4±0.1(mm) and Flatness 0.03/0.03(mm)						

Naming for the Module

Specification of Thermoelectric Module

TEHC1-07125

Standard Performance Graph Qc = f(V)

Voltage / V

Specification of Thermoelectric Module

TEHC1-07125

Performance Curves at Th=27 °C Performance Curves at Th=50 °C 4 DT=30 °C DT=30 °C 4 DT=20 °C DT=20 °C DT=10 °C 3 DT=10 °C DT=0 °C **L** 3 C. O. P DT=0 °C Ö. 2 $\dot{\upsilon}_2$ 1 1 0 0.0 17 3.4 5.1 6.8 8.5 7.5 9.0 0.0 1.5 3.0 4.5 6.0 Voltage / V Voltage / V Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C 0.6 0.8 DT=60 °C DT=70 °C 0.5 DT=50 °C DT=60 °C DT=40 °C 0.6 DT=50 °C 0.4 DT=40 °C <u>а</u> О 0.3 . 0.4 ن 0.2 0.2 0.1 0.0 0.0 9 3 4 6 8 9 3 4 6 8 10 5 7

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

Operation Cautions

• Attach the cold side of module to the object to be cooled

Voltage / V

- Attach the hot side of module to a heat radiator for heat dissipating
- Operation or storage module below melting point of solder
- \bullet Operation below $I_{max} \text{ or } V_{max}$
- Work under DC

Note: All specifications subject to change without notice.