Specification of Thermoelectric Module

TEHC1-12735S

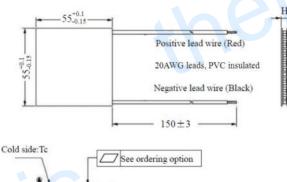
Description

The 127 couples, 55 mm \times 55 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 74 °C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

Hot side: Th

- High effective cooling and efficiency
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Performance Specification Sheet

Application

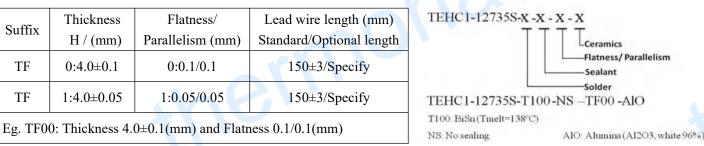
- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	74	83	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	16.8	18.05	Voltage applied to the module at DT _{max}
I _{max} (Amps)	30.8	30.8	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	329.0	359.0	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	0.41	0.47	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

See ordering option

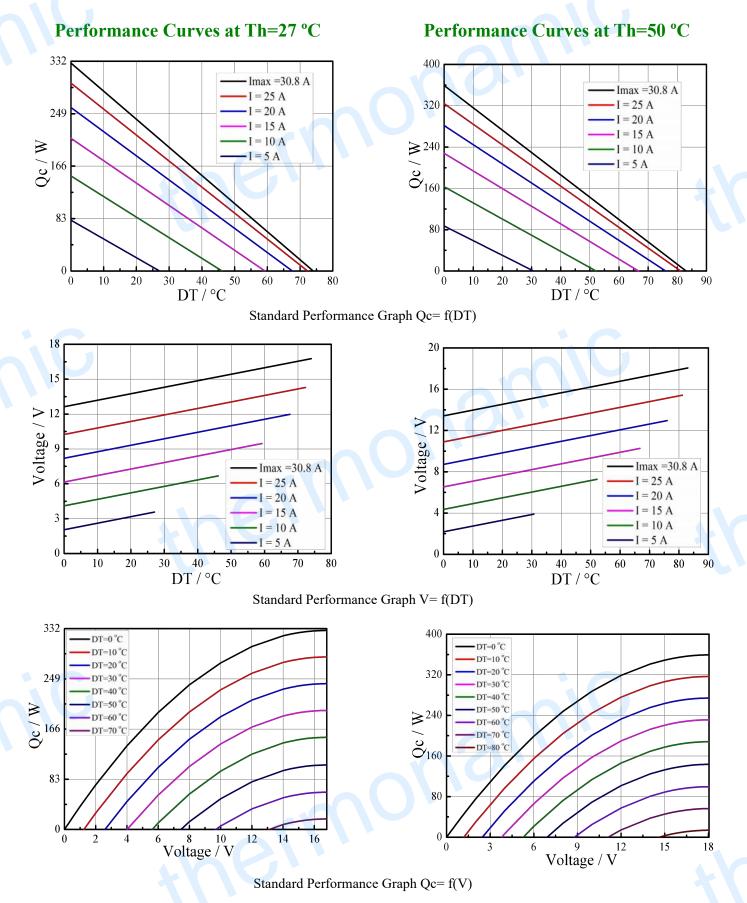
//See ordering option A


Manufacturing Options

A. Solder:	B. Sealant:
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant
C. Ceramics:	D. Ceramics Surface Options:
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)

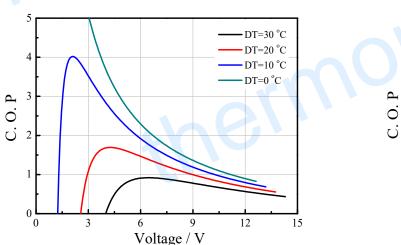
- 2. Aluminum Nitride (AlN)
 - Naming for the Module

2. Metalized

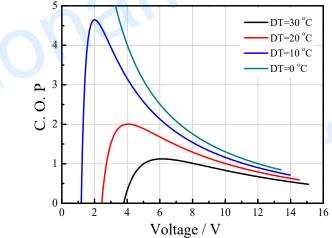


Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: <u>sales@thermonamic.com.cn</u> Web Site: www.thermonamic.com.cn

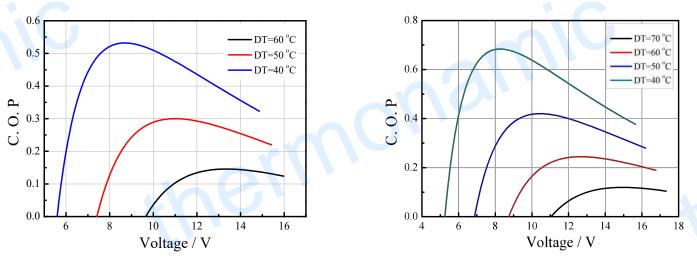
Specification of Thermoelectric Module


TEHC1-12735S

Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: <u>sales@thermonamic.com.cn</u> Web Site: www.thermonamic.com.cn


Specification of Thermoelectric Module

TEHC1-12735S



Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- \bullet Operation below I_{max} or V_{max}
- Work under DC