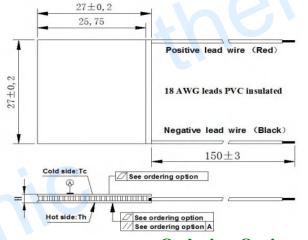
Specification of Thermoelectric Module TES2-181-176-14

Description

The TES2-181-176-14 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to $100 \, ^{\circ}$ C applications. It is a 181-176 couples module in size of $27 \, \text{mm} \times 27 / 25.75$ mm. If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	90	101	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	20.8	23.8	Voltage applied to the module at DT _{max}	
I _{max} (amps)	14.3	14.3	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	123.7	133.0	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (ohms)	1.45	1.56	The module resistance is tested under AC	
Tolerance	10%		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

1. T100: BiSn (Tmelt=138°C)

2. T200: CuSn (Tmelt = 227 °C)

B. Sealant:

1. NS: No sealing (Standard)

2. SS: Silicone sealant

3. EPS: Epoxy sealant

4. Customer specify sealing

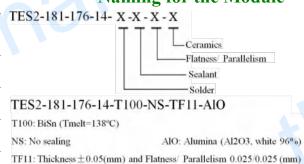
C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

1. Blank ceramics (not metallized)

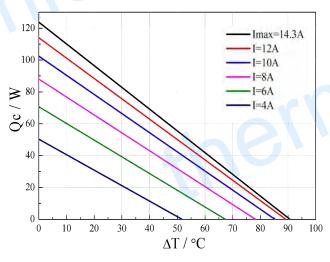

2. Metallized (Au plating)

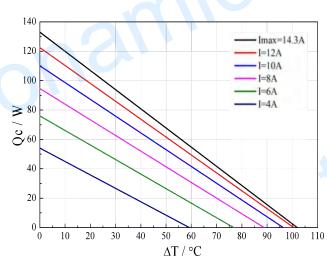
Ordering Option

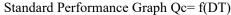
ordering option					
Suffix	Thickness	Flatness/	Lead wire length(mm)		
	(mm)	Parallelism (mm)	Standard/Optional length		
TF	$0:2.55\pm0.1$	0: 0.05/0.05	150±3/Specify		
TF	1:2.55± 0.05	1: 0.025/0.025	150±3/Specify		
TF	2:2.55± 0.025	2: 0.015/0.015	150±3/Specify		

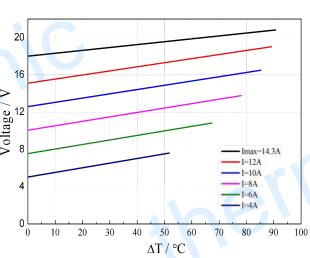
Eg. TF11: Thickness2.55 \pm 0.05(mm) and Flatness 0.025/0.025 (mm)

Naming for the Module

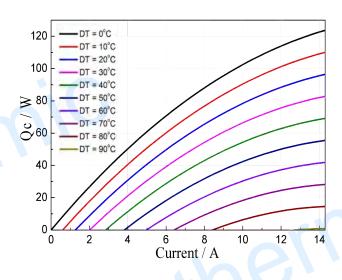


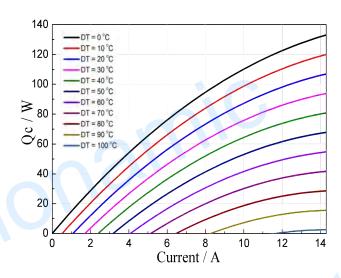

Specification of Thermoelectric Module


TES2-181-176-14

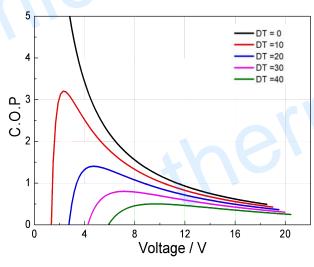


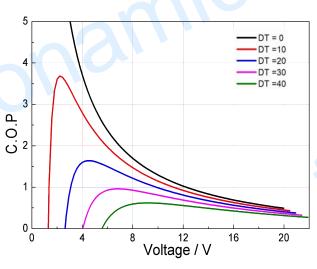
Performance Curves at Th=50 °C



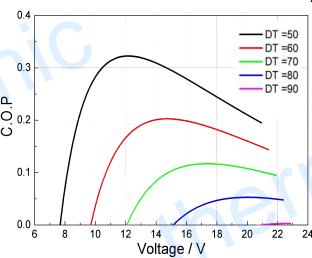


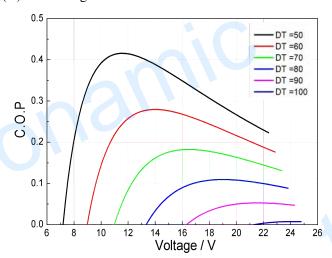
Standard Performance Graph $V = f(\Delta T)$


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES2-181-176-14




Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 40 °C

Standard Performance Graph COP = f(V) of DT ranged from 50 to 90/100 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Cold side of the module stuck on the object being cooled
- Hot side of the module mounted on a heat radiator
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC