Specification of Thermoelectric Module TETC3-125-125-125-10S1CH4.7T200

Description

The TETC3-125-125-10 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to 200 °C applications. It is a 125-125-125 couples module in size of 40mm ×40mm (top/bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT (0C)	104	117	Temperature Difference between cold and hot side of the module when
DT _{max} (°C)	104	117	cooling capacity is zero at cold side
U _{max} (Voltage)	14.5	15.7	Voltage applied to the module at DT _{max}
I _{max} (Amps)	10.0	10.0	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	39.6	42.6	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	1.22	1.31	The module resistance is tested under AC
Tolerance	10%		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

1. T100: BiSn (Tmelt=138°C)

B. Sealant:

2. T200: CuAgSn (Tmelt = 217° C)

2. SS: Silicone sealant

1. NS: No sealing (Standard)

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

D. Ceramics Surface Options: 1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

2. Metalized

Ordering Option

Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0: 10.3± 0.4	0: 0.1/0.1	150±3/Specify

Specification of Thermoelectric Module

TETC3-125-125-125-10S1CH4.7T200

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph Qc= f(DT)

Standard Performance Graph V= f(DT)

Standard Performance Graph Qc = f(I)

Specification of Thermoelectric Module

TETC3-125-125-125-10S1CH4.7T200

Performance Curves at Th=27 °C

3.0 2.5 2.0 DT = 0 DT = 10 DT = 20 DT = 30 DT = 50 DT = 60 DT = 60 Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 60 °C

Standard Performance Graph COP = f(V) of DT ranged from 70 to 100/110 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.