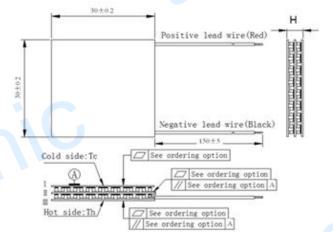
# Specification of Thermoelectric Module TETS2-127-127-50T200

## **Description**

The TETS2-127-127-50 is a 30\*30/30\*30 mm size multistage module, it is made of selected high performance ingot and fabricated by our unique "soft" processes to achieve superior cooling/heating performance. The module is able to run million thermal cycles in 70 °C temperature change range with less 3% degrading. It is good for the need of frequently cooling and heating up to 180°C applications. If higher operation or processing temperature is required, we can design and manufacture the custom made module according to your special requirements.

#### **Features**

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


## **Application**

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

## **Performance Specification Sheet**

| Th(°C)                     | 27   | 50   | Hot side temperature at environment: dry air, N <sub>2</sub>                                              |
|----------------------------|------|------|-----------------------------------------------------------------------------------------------------------|
| DT <sub>max</sub> (°C)     | 93   | 104  | Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side |
| U <sub>max</sub> (Voltage) | 14.5 | 16.7 | Voltage applied to the module at DT <sub>max</sub>                                                        |
| I <sub>max(</sub> amps)    | 5.5  | 5.5  | DC current through the modules at DT <sub>max</sub>                                                       |
| Q <sub>Cmax</sub> (Watts)  | 39.5 | 42.2 | Cooling capacity at cold side of the module under DT=0 °C                                                 |
| AC resistance(ohms)        | 2.5  | 2.75 | The module resistance is tested under AC                                                                  |
| Tolerance (%)              | 10%  |      |                                                                                                           |

#### Geometric Characteristics Dimensions in millimeters



## **Manufacturing Options**

A. Solder:

T200: CuSn (M.P.= 227 °C)

B. Sealant:

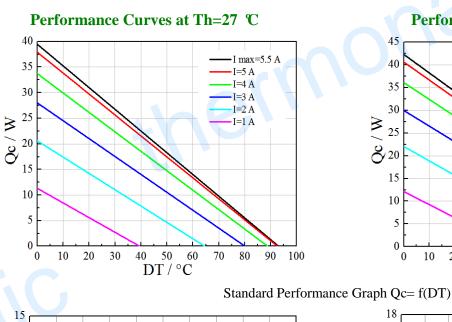
SS: Silicone sealant

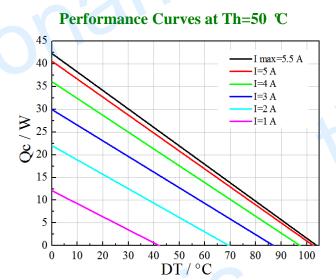
C. Ceramics:

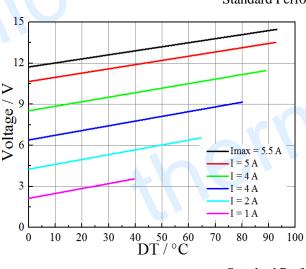
AlO: Alumina (Al<sub>2</sub>O<sub>3</sub>, white 96%)

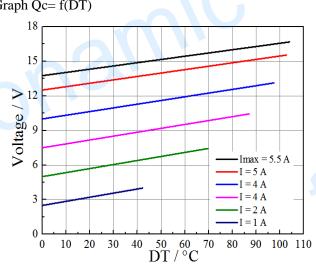
**D. Ceramics Surface Options:** 

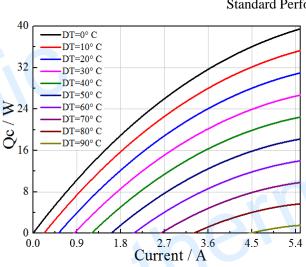
Blank ceramics (not metalized)

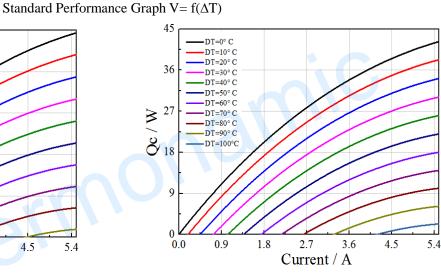

## **Ordering Option**


| Suffix | Thickness (mm) | Flatness/ Parallelism (mm) | Lead wire length(mm) Standard/Optional length |
|--------|----------------|----------------------------|-----------------------------------------------|
| TF     | 0: 5.8±0.2     | 0:0.08/0.08                | 150±5/Specify                                 |

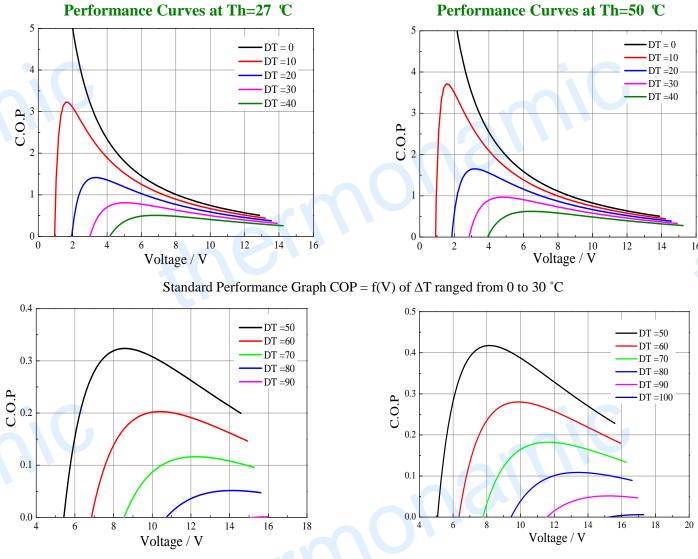

## **Operation Cautions**


- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I<sub>max</sub> or V<sub>max</sub>
- Work under DC


#### **Performance Curve**





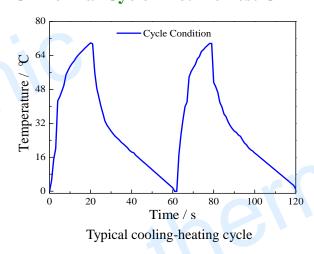



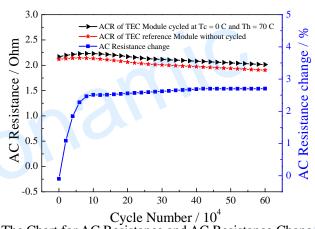







Standard Performance Graph Qc = f(I)





Standard Performance Graph COP = f(V) of  $\Delta T$  ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V ×I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 380,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

# **TEC Thermal Cycle Lifetime Test On TETC1-12706**





The Chart for AC Resistance and AC Resistance Changes

vs Cycle Number